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Abstract A sequential modelling approach consisting of

passing information across length scales is presented to

simulate macroscopic behavior of composite materials. The

modeling procedure utilizes a proper flow of information

from molecular scale to macroscopic scale including

material characteristics at different length scales. Both

molecular dynamics and analytical/numerical methods

were used in the multiscale analysis together with some

experimental observations obtained from Raman micro-

spectroscopy and X-ray microtomography. The multiscale

procedure is systematically applied to short glass fibre

polypropylene composite material.

Introduction

The concept of length scales exists because of the classes of

physical theories and models that have been developed to

describe material behaviour. Boundaries between the length

scales are delineated by the breakdown in the assumptions

implicit to a particular scale. Thus we can define each scale

by the phenomena that are treated discretely and the phe-

nomena that are treated collectively. The two exceptions are

the end points of the length scales. Everything at the elec-

tronic scale is treated discretely whereas everything at the

macro scale is treated collectively. This concept is illustrated

in Fig. 1. Starting the description from the smallest scale i.e.

going in the direction opposite to the length scale arrow, the

atoms and molecules are treated discretely at the atomic scale

and the electrons are treated collectively. At the micro scale

the atoms forming crystals are treated collectively and the

interface between composite matrix material and the fibre

reinforcement is treated discretely. At the next scale level

interfaces are treated collectively and single fibres are treated

discretely. At the continuum level the microstructure (such

as representative volume element) is treated discretely while

the microstructure descriptors (such as fibre orientation,

volume fraction, length distribution etc.) are treated collec-

tively. Finally, the macro scale represents a collection of

continuum treatments, i.e. structural application.

Modelling and simulation are becoming increasingly

ambitious. On the one hand, there are calculations, which

aim at increasingly precise and detailed description. A

number of assumptions is minimized, and empirical ele-

ments are replaced wherever possible. The improvements in

detail yield improvements in accuracy, and provide the

potential tool to resolve previously intractable problems. On

the other hand, increasingly large systems are being

investigated. These have different challenges. The methods,

which are best for studies concentrating on a few atoms,

may be inefficient for larger structures; there may be more

alternative structures possible than are obvious from the

smaller scale systems and, finally, the interpretation itself

may be difficult without other aids. There is therefore a need

to link experience at the macroscopic level with the

understanding from an atomic scale. Another area of

growing significance is that of the analysis of microstruc-

tural evolution. The architecture of materials microstructure

changes depending on synthesis and manufacturing condi-

tions resulting in different morphological configurations of

constituents. Once the relevant geometrical and physical

structures have been identified for a given synthesis and

production route, it is possible to turn to modelling and

simulation of the properties that they imply, Fig. 2. This
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flow chart is valid for any selected length scale differing

only in a degree of details incorporated in the analysis.

In principle, all length scales are covered by two fun-

damental physical models: discrete atomic models and

continuum field theories. In the range of several nanome-

tres and below, we are dealing with collections of discrete

particles interacting in terms of multi-body potentials. The

atomic-scale calculations allow examining many processes

that remain otherwise experimentally inaccessible. On the

other hand, continuum mechanics describes a material

system in terms of macroscopic variables such as mass,

stress and strain that significantly enlarges the applicability

region and facilitates direct measurements possibilities.

The integration of both methods has resulted in a number

of approaches, which combine discrete atomistic simula-

tions with continuum field theories and finite element

methods. The equivalence of the continuum to discrete

atomic system has been derived in a framework of

micromorphic theory [1–3] and non-local elasticity [4].

The atomic-scale finite element method [5] and quasicon-

tinuum method [6–8] combine atomically derived infor-

mation and the discretization of an object by finite

elements. Coarse-grained and projection approaches are

presented in [9, 10] that link atomic and continuum level.

The effective properties of multi-phase materials can be

determined through a homogenization technique in which

the heterogeneous medium is replaced by a homogeneous

one with anisotropic properties, which have to be deter-

mined. This kind of analysis provides overall behaviour of

a material from the known properties of the individual

constituents, their interaction, shape, orientation and vol-

ume fraction [11, 12].

However, the behaviour of short fibre reinforced

composites is not only a function of the aforementioned

quantities, but also of the interfacial bonding quality, which

governs a majority of mechanical properties of the

composite. The mechanical properties of a composite

depend critically on the load transfer efficiency at the

interface between fibre and matrix material. For carbon fi-

bre reinforced composites with non-reactive matrices, such

as semicrystalline thermoplastic polymers, the adhesion is

primarily a result of mechanical interaction. Thermoplastics

undergo large volume changes during crystallization in

addition to the differential thermal expansion between the

fibre and matrix. This will impose a compressive stress on

the fibre and increase the load transfer efficiency. However,

the level of residual stresses is dependent on the cooling

rate due to viscoelasticity and crystallization behaviour of

the matrix. For semicrystalline polymers like polypropyl-

ene, heterogeneous nucleation on the fibre surface may

affect residual stresses. If the nucleation density is suffi-

ciently high the spherulites impinge and can grow only in

one direction, normal to the surface of the fibre, developing

a transcrystalline interphase. The transcrystalline interphase

is often large in diameter compared to the fibre and for a

practical composite having a large volume fraction of fibres

the bulk matrix may predominantly have a transcrystalline

morphology. Due to the nucleation on the fibre surface and

the anisotropy of this phase, the transcrystalline interphase

may be expected to affect the properties of the composite by

influencing thermal residual stresses and the mechanical

properties of the surrounding matrix. Thus the fundamental

tasks in the prediction of the overall mechanical properties

are to determine parameters describing crystallization

kinetics, thermorheological behaviour of the matrix and

properties of the interphase being formed between the fibre

and the solidifying matrix.

In this paper, several aspects of multiscale modelling

of short fibre composites at different length scales are

presented.

Molecular level

In melt-crystallized polymers, such as polypropylene, the

morphology is usually lamellar consisting of stacks of

crystallites separated by the amorphous phase, Fig. 3.

Model composites with a transcrystalline interlayer were

manufactured by embedding single carbon fibres (unsized

PAN based high modulus) between isotactic-polypropylene

films [13]. The assembly was heated to melt (205 �C) for

5 min under a light pressure to exclude air and

Fig. 2 Flow chart relating materials structure to properties

Fig. 1 Physical length scales
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subsequently either quenched to room temperature or

cooled at 30�C/min to a crystallization temperature of

130�C, held for 30 min and then quenched to room tem-

perature. The later resulted in a well-defined transcrystal-

line interlayer, Fig. 4a. Processing conditions have a

pronounced influence on the evolution of interphases and

the morphology of matrix material. Varying the cooling

rate changes interphase morphology from almost isotropi-

cally oriented spherulitic crystals for low cooling rates to

anisotropically oriented crystals along the fibre surface as

in Fig. 4b. Obviously, the interphase morphology and

morphology of surrounding matrix material together with

their mechanical properties influence the residual stresses

and, consequently, overall properties of the composite.

Elastic and thermal properties of crystals at the inter-

phase and in the bulk influence value of residual stresses in

an encapsulated fibre. The equilibrated structure of

molecular crystal and stiffness tensor has been determined

using semiempirical quantum mechanical method AM1

[14]. The crystalline unit cell shown in Fig. 5 has lattice

parameters a = c = 1.995 nm and b = 2.096 nm. The

resulting stiffness tensor yields following component

values

Cc
ijkl¼

8:01 3:71 3:72 0:00 0:87 0:00

3:71 10:85 3:89 0:00 �0:38 0:00

3:72 3:79 41:34 0:00 �0:57 0:00

0:00 0:00 0:00 3:98 0:00 �0:11

0:87 �0:38 �0:57 0:00 3:13 0:00

0:00 0:00 0:00 �0:11 0:00 2:89

2
6666664

3
7777775
½GPa�

ð1Þ

The primitive cell of a-phase iPP crystal has a- and

c-axes three times smaller then the unit cell in Fig. 5 and its

coefficients of thermal expansion has been determined by

the X-ray diffraction experiments [15].

Interfacial interaction is an extremely complex process

due to continuous evolution of interfacial zones during

deformation and poses severe interpretation problems

going from atomic to continuum descriptions. Polypro-

pylene unit cell has been placed in the close proximity of

graphitic plates and subject to energy minimization in order

to obtain a stable reference configuration. Two configura-

tions have been investigated having either crystal c-axis

(Fig. 6a) or crystal b-axis (Fig. 6b) perpendicular to the

Fig. 4 Interface morphology under different processing conditions

Fig. 5 Unit cell of polypropylene crystal

Fig. 6 Configuration with crystal c-axis perpendicular to the graphite

plane (a) and crystal b-axis perpendicular to the graphite plane (b)

Fig. 3 The local lamella morphology with indication of crystalline

and amorphous phases
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graphite plane. The cleavage mode decohesion simulations

were performed for both systems. The decohesion process

consisted of a number of deformation steps caused by a

force applied to the crystal centre of gravity in the direction

perpendicular to the graphite planes. The interaction

energy has been calculated from the energy difference

between the fully cohesive and the complete pullout con-

figuration, which is equal to the work required for moving

crystal at distances where crystal does not interact with

graphite plates. As it follows from Fig. 7 orienting crystal

b-axis perpendicular to the graphite plane results in a

higher interaction energy and consequently better adhesion

than in the case when the crystal c-axis makes a right angle

with graphite planes. Both configurations seem to be

present in the transcrystalline layer as it will follow from

the micro-Raman spectroscopy investigations.

Variation of force with the separation distance between

crystal and graphite planes is shown in Fig. 8. Once the

force reaches maximum value necessary to move the crys-

tal from its equilibrium position then it decreases as the

separation distance between crystal and graphite gets

larger. It is interesting to notice that the presented force-

displacement diagram can be used as an atomic cohesive

zone model in the finite element formulation of the fibre

interface problem providing parameter values to cohesive

finite elements, which are implemented in many commer-

cially available finite element codes.

An important issue is the development of definitions for

continuum quantities that are calculable within a molecular

structure. The most frequently used form for the stress at

atomic level is based upon the Clausius virial theorem, which

determines the stress field applied to the surface of a fixed

volume containing interacting particles (atoms) as follows

ra
ij ¼

1

Xa �mava
i va

j þ
1

2

X
b

@V
@rab

rab
i rab

j

rabjj

 !
,

@V
@ra
¼ Fa ¼

XN

b 6¼a

Fab

ð2Þ

where ma, Wa and vi
a are respectively the atom mass, atomic

volume and component of the velocity vector, V is the two-

body potential acting between two atoms a and b separated

by the distance r, and Fa is the total force acting on atom a
from all b neighbours. It has been shown that the virial

stress cannot be directly related to the classical Cauchy

stress and several modifications have been proposed. By

using a finite-value and finite-ranged localization function

[16] the properties of the atoms are spread out allowing each

atom to contribute to a continuum property at the position r.

This function has units of inverse volume and is non-zero

only in some characteristic volume surrounding the spatial

point r and usually is taken as a radial step function. It is

essential to recognize that the stress at the location of an

atom depends on the details of the interatomic interactions

and the positions of interacting neighbours. Hence, the

atomic stress is a nonlocal function of the state of the

matter at all points in some vicinity of the reference atom,

in contrast to the local stress field used in classical con-

tinuum theories. It is also not clear how to use the virial

stress formula for cases where the interatomic interactions

are described by some multibody potential instead of pair

potentials, although some attempts have been made to

clarify this problem [17]. Furthermore, atoms in bonded

polymeric chains are subject to bending and torsion

moments, which are not included in the definition of virial

stress. Calculation of interfacial stresses that utilizes the

virial theorem or its modifications will not be pursuit her

because it seems that the relationship between local

displacements of atoms and the strain tensor is not as

ambiguous as the concept of atomic stress. Although

different strain measures can be formulated all of them

rely on the coordinates of atoms. Given a set of atom

coordinates the structure of the molecular system can be

analyzed by means of the Voronoi tessellation, which

Fig. 7 Interaction energy for two crystal configurations

Fig. 8 Force versus separation distance
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divides space into regions centred on these atoms and

defines atomic strain tensor [18]. This issue will not be

further pursuit her, nevertheless a simple calculation of

adhesion stresses can be made dividing the maximal force

that creates separation by the crystal area adjacent to the

graphite surface. Then the stress reads 310 and 750 MPa,

respectively for configurations (a) and (b) from Fig. 6.

Interphase level

Orientation distribution of crystals

Calculation of mechanical anisotropy of the interphase

requires the crystal orientation distribution function to be

determined. Raman microspectroscopy can be applied to

study the crystalline orientation distribution function,

which is related to the Raman scattering intensity in a

polarized light experiment [19]. It follows from the rela-

tions between Raman scattering intensity and Legendre

coefficients of the crystal orientation distribution function

that measurements on three orthogonal planes must be

made in order to determine the moments of the orientation

distribution, Fig. 9. The transcrystallized and subsequently

quenched sample has been carefully polished to obtain

three perpendicular free surfaces on which Raman spectra

of the six different polarizations could be acquired. The

orientation distribution function of c-axis of crystals

N(h,w,/) can be expressed as

Nðh;w;/Þ ¼
X

l¼0;2;4

X
m¼�l

X
n¼�l

W lmnZlmnðcos hÞe�imwe�in/

ð3Þ

where Zlmn are generelized Legendre functions and Wlmn the

expansion coefficients. Since the orientation of crystal c-axis

is axially symmetric along the fibre axis, the calculation of

the orientation distribution function is independent of the

angle /. It follows from the theory of Raman scattering that

the scattering intensity can be related to the expansion

coefficients of the orientation distribution function N(h,w).

Form six intensity measurements on three orthogonal planes

six expansion coefficients can be determined yielding the

orientation distribution function of crystals in the trans-

crystalline phase, Fig. 10. It can be seen that there is a pre-

ferred c-axis orientations at angles, where the orientation

distribution function attains its local maxima.

Aggregate model

The lamellae morphology of semicrystalline matrix mate-

rial can be described by an aggregation model containing

crystalline (c), amorphous (a) and defect (b) regions. The

later exists within the crystal region. Chains of the defect

region are not packed in a lattice but their motion is con-

strained by the surrounding lattice. In principle, the

behaviour of the defect region is different from the amor-

phous region. It has been also observed that the volume

fraction of defect region is proportional to the volume

fraction of the crystalline region which indicates a corre-

lation between (c) and (b) phases. The three-phase structure

of the aggregate model is shown in Fig. 11.

The parameters v 1 and v 2 are defined in terms of the

volume fractions of the phases

v1 ¼ vb=ð1� vaÞ
v2 ¼ va

ð4Þ

where vb = 0.83vc and va = 1–vc–vb. The volume fraction

of phases has been experimentally determined using

Raman microspectroscopy [20]. Local response matrices of

stiffness Cijkl, compliance Sijkl and thermal expansion aij

are derived by assuming constant stress or constant strain

within each phase as follows [21]

- constant stress

e ¼ ea þ eb; eb ¼ ec

r ¼ ra ¼ rb þ rc ð5Þ

gives
Fig. 9 Measurement of crystal orientation on three orthogonal planes

in the transcrystalline layer
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Sijkl ¼ ðCb
ijklv1 þ Cc

ijklð1� v1ÞÞ
�1ð1� v2Þ þ Sa

ijklv2

aij ¼ v2a
a þ
ð1� v2Þðac

ijC
c
ijijð1� v1Þ þ abCb

ijijv1Þ
Cc

ijijð1� vcÞ þ Cb
ijijv1

ð6Þ

- constant strain

e ¼ ea ¼ eb þ ec

r ¼ ra þ rb; rb ¼ rc ð7Þ

yields

Cijkl ¼ ðSb
ijklv1 þ Sc

ijklð1� v1ÞÞ�1ð1� v2Þ þ Ca
ijklv2

aij ¼
ðaav1 þ ac

ijð1� v1ÞÞð1� v2ÞþðSb
ijijv1 þ Sc

ijijð1� v1ÞÞaaCa
ijijv2

ð1� v2Þ þ ðSb
ijijv1 þ Sc

ijijð1� v1ÞÞCa
ijijv2

ð8Þ

The effective properties of the semicrystalline matrix

material are determined by spatial averaging over the

representative volume element. Formally it means that any

property P can be spatially averaged with the orientation

distribution function N as

\Pijkl[¼
Z 2p

0

Z 2p

0

Z p

0

Nðh,w,/Þaipajqakrals

� Ppqrsðpi,diÞ sin hdhdwd/ ð9Þ

where aij is the transformation matrix having Euler angles

as components, pi are the properties of the individual

phases and di is a set of morphological descriptors coupled

with phases properties.

Thus the averaged stiffness, compliance and thermal

expansion properties of the aggregate model can be

written with Eq. 9 as a template after substitution Eq. 3

into it

Cijkl
� �

¼
X

1¼0;2;4

Xl

m¼�1

Xl

n¼�1

W lmnIClmn
ijklpqrsCpqrsðCa;b;c

pqrs ;S
a;b;c
pqrs ;v

a;b;cÞ

Sijkl
� �

¼
X

1¼0;2;4

Xl

m¼�1

Xl

n¼1

W lmnIS;lmn
ijklpqrsSpqrsðCa;b;c

pqrs ;S
a;b;c
pqrs;v

a;b;cÞ

aij
� �
¼
X

1¼0;2

Xl

m¼�1

Xl

n¼�1

W lmnIa;lmn
iijpq apqðaa;b;c

pq ;Ca;b;c
pqrs;S

a;b;c
pqrs ;v

a;b;cÞ

ð10Þ

where Cpqrs
a,b,c, Spqrs

a,b,c and apq
a,b,c are the properties of phases a,

b and c of the aggregate model, Cpqrs, Spqrs and apq are the

solutions from Eqs. 6 and 8, Iijklpqrs
C,lmn , Iijklpqrs

S,lmn , Iiijpq
a,lmn

are the expression containing averaging integrals

and Legendre functions from Eqs. 3 and 9, and

finally va,b,c, Wlmn defines crystallinity and crystalline

orientation.

Fig. 10 Euler angles (a);

orientation distribution of c-axis

N(h, w) (b); orientation

distribution in plane x1-x2 (c);

orientation distribution (1) in

plane x1-x3 and (2) in plane x2-

x3 (d)

Fig. 11 Representative volume element of the three-phase aggregate

model
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Amorphous phases

The defect phase (b) remains elastic due to constrain from

the surrounding crystalline lattice, whereas amorphous

phase (a) exhibits viscoelastic behaviour. It is further

assumed that the instantaneous elastic response of phases

(a) and (b) are equal. A relaxation function for phase (a)

takes the form

EaðT ; tÞ ¼ Ea0ðT Þ þ C � baðT ÞðaatÞn ð11Þ

where Ea0 is the instantaneous modulus, aa and ba are

respectively horizontal and vertical shift factors, and C, n

are constants. These parameters were determined by fitting

the aggregate model to properties of the bulk polymer,

using known volume fraction of phases [20]. The fitting

procedure was accomplished by minimization of the square

of the difference between the aggregate model and mea-

sured relaxation modulus at different temperature

min ðEiPP ðTi; tÞ � Skkkkh i�1ðTi; tÞÞ2; ðEa0;C; ba; aa; nÞj
��

ð12Þ

where ÆSkkkk æ–1=ÆS1111 æ–1=ÆS2222 æ–1=ÆS3333 æ–1 (for

Wlmn=0,1‡2), and EiPP is the measured relaxation modulus.

Figure 12 shows prediction of the aggregate model com-

pared to the experimental data for iPP polymer. The con-

stants C and n read values –419 and 0.0095, respectively.

The temperature dependent parameters of the relaxation

function are shown in Fig. 13 together with the master

curve for the amorphous matrix.

Fibre level

Non-isothermal crystallization

Crystallization kinetics of semicrystalline polymers is

highly dependent on the cooling rate through the temper-

ature range of crystallization. It is of practical interest to

study the non-isothermal crystallization kinetics as the

processing of thermoplastic based materials involves

cooling from the melt through the temperature range of

crystallization. Crystallinity affects dilatational behaviour

and mechanical properties of the polymer and a relation

between cooling rate and crystallization kinetics may lead

to improved understanding of the evolution of residual

stresses in polymer based materials. Crystallization is

composed of primary and secondary crystallization stages.

Primary crystallization is characterized by nucleation and

growth of spherulitic domains. When spherulites impinge

the growth is terminated and the secondary intraspherulitic

crystallization commences resulting in densification of the

matrix. Figure 14 shows images of progressing crystalli-

zation and schematics of the crystallization within point P.

The degree of conversion between polymer melt and solid

crystallites can be written as

CðT Þ ¼ vcðT Þ
vc1 ð13Þ

where vc(T) is the degree of crystallinity at temperature T

and vc¥ is the degree of crystallinity reach at the end of

cooling. Derivation of the expressions for the degree of

conversion for both primary and secondary crystallization

processes as well as corresponding measurements of the

degree of crystallinity using optical and Raman microscopy

allows to determine the evolution of matrix morphology

during cooling process [13, 22]. Crystallization process in a

bulk such as in Fig. 14 is homogeneous as opposed to the

heterogeneous crystallization, which may be trigged by a

presence of inclusions and their surfaces. Heterogeneous

crystallization is characterized by higher nucleation tem-

perature and nucleation density on the surfaces, resulting in

constrained growth and the formation of an anisotropic

layer. The evolution of crystalline phase during cooling

under either homogeneous or heterogeneous conditions can

be quantified by the same type of equation with parameters

having obviously distinct values for specific condition. The

total crystallinity can be described in terms of a convolu-

tion integral

vcðT Þ ¼ CIðT ÞvcI 1 � vcII 1

R

Z T

0

CIIðsÞ d

ds
½CIðT � sÞ�ds

ð14Þ

where CI and CII are the conversion rates for primary and

secondary crystallization process, respectively and R is

cooling rate. Parameters for the homogeneous crystalliza-

tion process were determined in [22]. Figure 15a shows the

relative contribution from the primary and secondary pro-

cess to the degree of conversion at cooling temperature of

25 �C/min. The secondary process amounts to a substantialFig. 12 Fit of the aggregate model to viscoelastic data
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part of the total crystallization process at this particular

cooling rate. The contribution from the secondary process

increases with increasing cooling rate, Fig. 15b. The

presence of a substrate such as fibre may influence

the nucleation kinetics by providing sites for heterogeneous

nucleation. The presence of the substrate affects the

nucleation kinetics by lowering the energy barrier thus

increasing the nucleation temperature and nucleation rate,

whereas growth rate and subsequent secondary crystallization

are the same as for the bulk crystallization. The case of

heterogeneous crystallization is shown in Fig. 16. The

degree of conversion from melt to crystallized state is

governed by both heterogeneous crystallization and

homogeneous crystallization, which corresponds to the

creation of transcrystalline layer and spherulitic structure,

respectively, as in Fig. 16a. When the volume fraction of

fibres and the heterogeneous nucleation density are high,

the crystallization of the matrix develops predominantly in

a form of transcrystallinity, Fig. 16b. The degree of con-

version by the primary process, in terms of the inter-fibre

distance rm defining the fibre volume fraction V = (rf)2/

(rm)2 is given by

Fig. 13 Horizontal (a) and

vertical shifts (b), instantaneous

elastic modulus (c) and the

master curve for amorphous

phase (d)

Fig. 14 Illustration of primary and secondary crystallization

Fig. 15 Contribution from the primary and secondary crystallization

to the degree of conversion (a) and contribution of secondary

crystallization as a function of cooling rate (b)
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CI
heter ¼

ðrtcÞ2 � ðrf Þ2

1� V
þ ðr

mÞ2 � ðrtcÞ2

1� V
CI

hom ð15Þ

and Chom
I is the degree of conversion by the primary process

under homogeneous crystallization. As the secondary het-

erogeneous process is independent of the interfacial energy

thus equal to the secondary process for bulk crystallization,

the degree of crystallinity for heterogeneous process again

takes a form as in Eq. 14. Figure 17a shows the influence of

the crystallization temperature for homogeneous and heter-

ogeneous crystallization. The heterogeneous nucleation

occurs at a higher temperature than in the bulk. However,

increasing cooling rate, the difference decreases

Residual stresses

When spherulites are heterogeneously nucleated, a solidi-

fied interlayer is instantly formed around the fibre. Mod-

elling of the transcrystalline growth is accomplished by a

composite model consisting of fibre, transcrystalline

interlayer and bulk matrix, Fig. 18. The elastic solution for

the composite model with an anisotropic interlayer can be

solved based upon shear-lag assumptions [21, 23]. In the

present case however, the time and temperature dependent

solution is needed. A direct viscoelastic solution of the

above-mentioned problem involves an inversion of the

Laplace transform of corresponding hereditary integral,

which cannot be solved exactly. Instead, a quasi-elastic

approach has been used that utilizes the elastic solution as

follows [24]

rðtÞ ¼
Z n

0

reð Cm
ijklðn� n

0 Þ
D E

; am
ij

D E
Þ dT

dn
0 dn

0 ð16Þ

where re is the elastic solution for the embedded single

fibre subject to a unit step change in temperature and ÆCijkl
m æ,

Æa ij
m æ are the properties of the matrix determined by the

aggregate model. The hereditary integral (16) is solved by

the time incremental approach together with a simulta-

neous solution of the convolution integral determining

evolution of crystallinity (14). Thermal stress evolution

during cooling is shown in Fig. 19 where the experi-

mental results are compared to the predictions of the

aggregate model. The distribution of thermal stresses

along fibre axis is presented in Fig. 20 for cooling rates

differing by an order of magnitude. As it follows from

micrographs taken in room temperature the nucleation

density of transcrystalline layer obtained with cooling rate

2.5 �C/min is low and its morphology is different than in

the samples with higher cooling rate. The degree of

anisotropy is quite small in samples cooled slowly and

therefore, the isotropic aggregate model is better suited in

those cases

Fig. 16 Heterogeneous and homogeneous crystallization (a) and

completely heterogeneous morphology of the matrix (b)

Fig. 17 Nucleation/crystallization temperature for heterogeneous (1)

and homogeneous (2) crystallization (a) and thickness of transcrys-

talline layer as a function of cooling rate (b)

Fig. 18 Three component model for a single fibre composite

Fig. 19 Thermal stress evolution in fibre at different cooling rates
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Continuum level

Constitutive model

A multiphase material is by definition heterogeneous and

its local properties vary spatially. If the material is

statistically homogeneous, which means that the local

material properties are constant when averaged over a

representative volume element and then it is possible to

replace the real disordered material by a homogeneous one

where the local material properties are the averages over

the representative volume element in the real material.

Estimation of those averages presents a fundamental issue

for different effective medium theories [12, 25–28]. Cal-

culation of effective creep properties of short fibre com-

posites is based upon derivations presented in [29–31]. The

methodology utilized a modified Mori–Tanaka approach

[32] and allows calculating effective creep properties

including imperfect interfaces between the fibres and ma-

trix material as well as taking into account arbitrary ori-

entation distribution of fibres. The non-perfect bonding is

modelled as a spring layer of vanishing thickness. If S and

ni denotes the interface and its unit normal then the trac-

tions must vanish at the interface

Drijnj ¼ rij xð Þ
��
Sþ�rij xð Þ

��
S�

h i
nj ¼ 0 ð17Þ

where S+ and S– denote approaching the interface from

outside or inside of the inclusion and the displacement

jump Dui(x ) is

Dui ¼ bui xð ÞjSþ�ui xð ÞjS�c ¼ gijrjknk ð18Þ

with the interface compliance gij = a dij +(b –a )ni nj.

Parameters a and b represent the compliance in the tan-

gential and normal direction of the interface, respectively.

Setting b = 0 and a to a small value will represent

softening of the interface. The incremental formulation of

the creep process contains the stiffness tensor for the

matrix material. This tensor can be calculated with the

aggregate model as explained in the previous chapter,

however in the present paper properties of the matrix

material are taken from [31].

Fibre orientation distribution

An important aspect of microstructure’s morphology is

shape and orientation size of reinforcing constituents. In

the case of short fibre composites the fibres are considered

as being circularly cylindrical with a finite length. The

distribution of fibres’ diameters may be easily inferred

from planar sections of the material, where the intersec-

tions with fibres appear in a form of elliptical profiles. The

minor axis of an ellipse represents the fibre diameter. A

rather different situation arises when one wants to deter-

mine length distribution of short fibres embedded in the

matrix material. The simplest way to extract fibre lengths is

to burn off the matrix material and then perform length

measurements in an image analyzer. However, the pyro-

lysis technique by itself may cause fibres’ fragmentation,

and its usefulness depends upon a particular combination

Fig. 20 Thermal stress

distribution along fibre axis:

dashed line—experimental data,

solid line—aggregate model

with anisotropic (1) and

isotropic solution (2)
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of constituent phases. Also measurements of fibre lengths

made before processing are doubtful, as some processing

techniques, like for example an injection molding, may

result in fibre breaking. The length distribution of fibres can

be assessed using stereological approaches [33] or X-ray

microtomography [34–36], which allows to disclose

fibre orientation distribution as shown in Fig. 21. The

orientation distribution function g(h, w) describes a number

of fibre directions that cross a unit sphere surface in terms

of Euler angles as in Fig. 10a. The distribution function

does not depend on the rotation angle / and for injection

moulded samples the fibre orientation is uniformly dis-

tributed with respect to w, thus the distribution is related

only to the angle h and can be described in the following

form

gðhÞ ¼ sinðhÞ2P�1
cosðhÞ2Q�1

R hb

ha
sinðhÞ2P�1

cosðhÞ2Q�1
dh

ð19Þ

where ha and hb are the upper and lower limits of the angle

h that is present in the distribution and P‡0.5, Q‡0.5. The

orientation distribution of fibres is taken into account in the

procedure leading to the determination of overall creep

deformation by averaging the eigenstrains overall direc-

tions present in the representative volume element [29–31].

By appropriately adjusting parameters of the distribution

function it is possible to describe both narrow and more

smeared out distributions along preferred directions as

shown in Fig. 22. The results of calculations of creep

strains are shown in Figs. 23 and 24. The applied uniaxial

stress is 4 MPa and softening parameter a = 8 e–6 MPa–1.

As expected the creep strains in samples with preferred

orientation along the loading direction are significantly

lower that for samples having fibres gathering around 45�.

Furthermore, there are more differences between perfect and

imperfect samples when the distribution is wider and

the preferred orientation is along 0� direction. The width of

Fig. 21 Transmission

micrograph of short fibre

composite (a), reconstructed 2D

sections (b) and 3D

configuration if fibres (c)

Fig. 22 Orientation distribution

functions for preferred

orientation along 0� direction

(a) and 45� direction (b)
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the distribution does not influence the creep response when

the fibres are oriented along 45� independently whether they

are perfectly or imperfectly bonded. The corresponding

conclusions can be drawn for the creep strains under shear

loading conditions. It is interesting to notice that the creep

strains in 0� and 45� samples loaded in uniaxial tension differ

Fig. 23 Creep strains in

uniaxial tension

Fig. 24 Creep strains in

uniaxial shear

Fig. 25 Orientation distribution

function for samples processed

with low injection velocity
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by one order of magnitude whereas in uniaxial shear this

difference is of the same magnitude as strains themselves.

The orientation distribution of fibres in samples pre-

pared by an injection moulding technique has been mea-

sured in the core region of the samples and in the outer skin

layer. The batches were prepared by performing injection

moulding with a low and high velocity. The experimental

data has been approximated by the distribution function

g(h) as in Eq. 19. As it follows from Figs. 25 and 26 the

distribution of fibres is narrower in samples prepared with

high injection velocity. Furthermore, the fibres in the skin a

better aligned as compared to the fibres in the core region.

This is a result of a constraint from the mould wall. The

same creep strain analysis has been conducted as before.

The results are shown in Figs. 27 and 28. Better alignment

of fibres caused by high injection velocity results in smaller

creep strains as compared to low velocity samples. The

creep resistance is pronouncedly higher in uniaxial tension

than in uniaxial shear and the creep strain level seems to be

velocity independent for the core and skin regions.

Conclusion

The methodology for bridging the gap between different

length scales has been presented and illustrated for the

determination of the overall creep behaviour of short fibre

reinforced composite material. What is clear is the

importance of macroscopic methods: elasticity and visco-

elasticity theory and their generalizations. Furthermore, the

manufacturing conditions should be accounted for at

different scale levels. Obviously, these approaches are too

simple to be applied at the atomic scale. But the continuum

theories provide a limit for atomic treatments for regions of

larger sizes, and they provide a tool for embedding

sophisticated atomistic or molecular subsystems within a

representation of its real environment.

Fig. 26 Orientation distribution

function for samples processed

with high injection velocity

Fig. 27 Creep strains in

uniaxial tension for both

injection velocities

Fig. 28 Creep strains in uniaxial shear for both injection moulding velocities
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